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Kohn-Sham equation

Potential due to nuclei

Potential due to electron repulsuion, 
or simply Hartree potential

Exchange-correlation 
potential



Mapping onto a linear algebra problem

Basis functions

Hamiltonian matrix elements Overlap matrix elements

Linear generalized eigenvalue problemLinear generalized eigenvalue problemLinear generalized eigenvalue problem



Mapping onto a linear algebra problem

Basis functions

Hamiltonian matrix elements Overlap matrix elements

Linear generalized eigenvalue problem

But the potential depends on the electron density, 
which depends on the wavefunctions... 

Linear generalized eigenvalue problemLinear generalized eigenvalue problem



Workflow



(L)APW basis

MT

MT

INTERSTITIAL
REGION

MT = Muffin tin,
augmentation spheres

LAPW stands for (linearized) 
augmented plane waves.

We have some a priori 
knowledge what to expect 
from wavefunctions close to 
nuclei and far away from them.

Close to nucleus → atom-like WFs. Use 
“atomic orbitals”!

Away from nucleus → smooth, slowly varying 
 WFs. Use plane waves!
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Kohn-Sham equation

If the potential is spherically symmetric, we 
could solve just the radial equation



Example: Helium atom

1s state can be solved for using just the radial 
equation



Example: Helium atom with APW



Example: Helium atom with APW

But how do we know the energy in advance? 

1s state is spherically 
symmetric, and only the l=0 
component should be non-
zero.



Which energy would you take?

The energy parameter should 
match eigenenergies of a studied 
system.

The original  APW method finds 
the energy parameters 
automatically by considering 
energy-dependent Hamiltonian.
It is too complicated!



What if we just guess the energy?



Linearization

Problem: we know how to compute             , 
but we do not know which specific    to take.   

A step towards solution: linearize u.

Still depends on energy, but now we 
know the direction for the improvement 



LAPW basis

Smoothness condition



Example: Helium atom with LAPW



Features of LAPW

Improves upon APW with frozen energy 
parameters.

Preserves the number of basis functions 
compared to APW.

Is limited to description of valence electrons, 
since there can be only one energy parameter 
per l. Core states are treated differently than 
valence states.



APW+lo basis

APW

Local orbital

Local orbital is normalized and turns 
to zero on the augmentation sphere

Size of the basis and Hamiltonian is defined by the number 
of plane-waves and local orbitals. 



Linearization, quadratization etc.

APW

Local orbitals



Example: diamond

Consider l=1

rgkmax=8

method Etot, Ha

APW -75.576230

LAPW -75.590045

APW+lo -75.590101

APW+2lo -75.590103

APW+3lo -75.590103

Core electrons are considered separately using the 4-component Dirac equation
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Species

APW

APW+lo

APW+2lo

APW+3lo

Radial degrees of freedom for l=1



Semicore states

                                     have nodal structures 
that are not compatible with the semicore. We 
need a basis function that recovers the correct 
nodal structure.

A choice that brings you to the “APW level”:

Use expansion in series to go beyond it!



Example: diamond

Consider l=0 with 1s and 2s both considered 
as valence electrons

rgkmax=8

method Etot, Ha

APW -29.678023

LAPW -29.745748

APW+lo -75.526692

APW+2lo -75.589507

APW+3lo -75.590142

APW+4lo -75.590143

↑↓↑↓
1s 2 2s 2 2p2

↑↑
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Example: diamond
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APW

APW+lo

APW+2lo

APW+3lo

Radial degrees of freedom for l=0

APW+4lo



Features of APW+lo

Improves upon APW with frozen energy 
parameters.

Slightly increases the number of basis 
functions compared to APW.

Can describe valence states, semicore states 
and even core states. But normally core states 
are treated differently than valence states.

Can be easily adjusted to yield any accuracy 
you like.



What about plane waves?

Accuracy of the plane-wave part of the basis is 
controlled by their cut-off. However, the 
required cut-off strongly depends on the size of 
muffin tins. Hence the LAPW community uses    
                   as the dimensionless cut-off 
parameter.

Larger is                  , more accurate is your 
calculation. But do not abuse it! By the value of 
~12 you get ~1 μHa at a high expense. Beyond Ha at a high expense. Beyond 
it, the basis becomes almost linearly dependent.



Example: diamond

A. Gulans et al., J. Phys.: Condens. Matter 26, 363202 (2014)



Summary
“FP-LAPW” refers to a whole family of 

methods and APW+lo is among them. 

“FP-LAPW” is the gold-standard method for 
DFT calculations of solids. 

Local orbitals can be used for implementing a 
simple and efficient strategy how to arrive at the 
essentially exact solutions of the Kohn-Sham 
equation.
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